On cores in Yetter-Drinfel'd Hopf algebras

نویسندگان

چکیده

By constructing explicit examples, we show that the core of a group-like element in cocommutative cosemisimple Yetter-Drinfel'd Hopf algebra over group ring finite abelian is not always completely trivial.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lie Algebras in the Category of Yetter - Drinfeld Modules

The category of Yetter-Drinfeld modules YD K over a Hopf algebra K (with bijektive antipode over a field k) is a braided monoidal category. If H is a Hopf algebra in this category then the primitive elements of H do not form an ordinary Lie algebra anymore. We introduce the notion of a (generalized) Lie algebra in YD K such that the set of primitive elements P (H) is a Lie algebra in this sense...

متن کامل

3 More Properties of Yetter - Drinfeld Modules over Quasi - Hopf Algebras

We generalize various properties of Yetter-Drinfeld modules over Hopf algebras to quasi-Hopf algebras. The dual of a finite dimensional Yetter-Drinfeld module is again a Yetter-Drinfeld module. The algebra H 0 in the category of Yetter-Drinfeld modules that can be obtained by modifying the multiplication in a proper way is quantum commutative. We give a Structure Theorem for Hopf modules in the...

متن کامل

Yetter-drinfeld Modules over Weak Hopf Algebras and the Center Construction

We introduce Yetter-Drinfeld modules over a weak Hopf algebra H, and show that the category of Yetter-Drinfeld modules is isomorphic to the center of the category of H-modules. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak DoiHopf modules, and, a fortiori, a...

متن کامل

Yetter-drinfeld Modules over Weak Bialgebras

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Yetter-drinfeld Modules under Cocycle Twists

We give an explicit formula for the correspondence between simple Yetter-Drinfeld modules for certain finite-dimensional pointed Hopf algebras H and those for cocycle twists H of H. This implies an equivalence between modules for their Drinfeld doubles. To illustrate our results, we consider the restricted two-parameter quantum groups ur,s(sln) under conditions on the parameters guaranteeing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.04.017